Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Approximation of nilpotent orbits for simple Lie groups (2101.08774v2)

Published 21 Jan 2021 in math.RT and math.GT

Abstract: We propose a systematic and topological study of limits $\lim_{\nu\to 0+}G_\mathbb{R}\cdot(\nu x)$ of continuous families of adjoint orbits for non-compact simple Lie groups. This limit is always a finite union of nilpotent orbits. We describe explicitly these nilpotent orbits in terms of Richardson orbits in the case of hyperbolic semisimple elements. We also show that one can approximate minimal nilpotent orbits or even nilpotent orbits by elliptic semisimple orbits. The special cases of $\mathrm{SL}_n(\mathbb{R})$ and $\mathrm{SU}(p,q)$ are computed in detail.

Summary

We haven't generated a summary for this paper yet.