Papers
Topics
Authors
Recent
2000 character limit reached

Smallest complex nilpotent orbits with real points

Published 27 Feb 2014 in math.RT | (1402.6796v1)

Abstract: Let us fix a complex simple Lie algebra and its non-compact real form. This paper focuses on non-zero adjoint nilpotent orbits in the complex simple Lie algebra meeting the real form. We show that the poset consisting of such nilpotent orbits equipped with the closure ordering has the minimum. Furthermore, we determine such the minimum orbit in terms of the Dynkin--Kostant classification even in the cases where the orbit does not coincide with the minimal nilpotent orbit in the complex simple Lie algebra. We also prove that the intersection of the orbit and the real form is the union of all minimal nilpotent orbits in the real form.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.