Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 81 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Local-global principles for homogeneous spaces over some two-dimensional geometric global fields (2101.08245v2)

Published 20 Jan 2021 in math.AG and math.NT

Abstract: In this article, we study the obstructions to the local-global principle for homogeneous spaces with connected or abelian stabilizers over finite extensions of the field $\mathbb{C}((x,y))$ of Laurent series in two variables over the complex numbers and over function fields of curves over $\mathbb{C}((t))$. We give examples that prove that the usual Brauer-Manin obstruction is not enough to explain the failure of the local-global principle, and we then construct a variant of this obstruction using torsors under quasi-trivial tori which turns out to work. In the end of the article, we compare this new obstruction to the descent obstruction with respect to torsors under tori. For that purpose, we use a result on towers of torsors, that is of independent interest and therefore is proved in a separate appendix.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube