Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 70 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Towards Confident Machine Reading Comprehension (2101.07942v2)

Published 20 Jan 2021 in cs.CL

Abstract: There has been considerable progress on academic benchmarks for the Reading Comprehension (RC) task with State-of-the-Art models closing the gap with human performance on extractive question answering. Datasets such as SQuAD 2.0 & NQ have also introduced an auxiliary task requiring models to predict when a question has no answer in the text. However, in production settings, it is also necessary to provide confidence estimates for the performance of the underlying RC model at both answer extraction and "answerability" detection. We propose a novel post-prediction confidence estimation model, which we call Mr.C (short for Mr. Confident), that can be trained to improve a system's ability to refrain from making incorrect predictions with improvements of up to 4 points as measured by Area Under the Curve (AUC) scores. Mr.C can benefit from a novel white-box feature that leverages the underlying RC model's gradients. Performance prediction is particularly important in cases of domain shift (as measured by training RC models on SQUAD 2.0 and evaluating on NQ), where Mr.C not only improves AUC, but also traditional answerability prediction (as measured by a 5 point improvement in F1).

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.