Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 11 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 30 tok/s Pro
2000 character limit reached

JITuNE: Just-In-Time Hyperparameter Tuning for Network Embedding Algorithms (2101.06427v2)

Published 16 Jan 2021 in cs.LG

Abstract: Network embedding (NE) can generate succinct node representations for massive-scale networks and enable direct applications of common machine learning methods to the network structure. Various NE algorithms have been proposed and used in a number of applications, such as node classification and link prediction. NE algorithms typically contain hyperparameters that are key to performance, but the hyperparameter tuning process can be time consuming. It is desirable to have the hyperparameters tuned within a specified length of time. Although AutoML methods have been applied to the hyperparameter tuning of NE algorithms, the problem of how to tune hyperparameters in a given period of time is not studied for NE algorithms before. In this paper, we propose JITuNE, a just-in-time hyperparameter tuning framework for NE algorithms. Our JITuNE framework enables the time-constrained hyperparameter tuning for NE algorithms by employing the tuning over hierarchical network synopses and transferring the knowledge obtained on synopses to the whole network. The hierarchical generation of synopsis and a time-constrained tuning method enable the constraining of overall tuning time. Extensive experiments demonstrate that JITuNE can significantly improve performances of NE algorithms, outperforming state-of-the-art methods within the same number of algorithm runs.

Citations (9)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.