Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Pandemic Spread in Communities via Random Graphs (2101.05354v2)

Published 13 Jan 2021 in cond-mat.stat-mech, math.CO, and q-bio.PE

Abstract: Working in the multi-type Galton-Watson branching-process framework we analyse the spread of a pandemic via a general multi-type random contact graph. Our model consists of several communities, and takes, as input, parameters that outline the contacts between individuals in distinct communities. Given these parameters, we determine whether there will be an outbreak and if yes, we calculate the size of the giant connected component of the graph, thereby, determining the fraction of the population of each type that would be infected before it ends. We show that the pandemic spread has a natural evolution direction given by the Perron-Frobenius eigenvector of a matrix whose entries encode the average number of individuals of one type expected to be infected by an individual of another type. The corresponding eigenvalue is the basic reproduction number of the pandemic. We perform numerical simulations that compare homogeneous and heterogeneous spread graphs and quantify the difference between them. We elaborate on the difference between herd immunity and the end of the pandemic and the effect of countermeasures on the fraction of infected population.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.