Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 388 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Instanton Floer homology, sutures, and Euler characteristics (2101.05169v4)

Published 13 Jan 2021 in math.GT

Abstract: This is a companion paper to an earlier work of the authors. In this paper, we provide an axiomatic definition of Floer homology for balanced sutured manifolds and prove that the graded Euler characteristic $\chi_{\rm gr}$ of this homology is fully determined by the axioms we proposed. As a result, we conclude that $\chi_{\rm gr}(SHI(M,\gamma))=\chi_{\rm gr}(SFH(M,\gamma))$ for any balanced sutured manifold $(M,\gamma)$. In particular, for any link $L$ in $S3$, the Euler characteristic $\chi_{\rm gr}(KHI(S3,L))$ recovers the multi-variable Alexander polynomial of $L$, which generalizes the knot case. Combined with the authors' earlier work, we provide more examples of $(1,1)$-knots in lens spaces whose $KHI$ and $\widehat{HFK}$ have the same dimension. Moreover, for a rationally null-homologous knot in a closed oriented 3-manifold $Y$, we construct canonical $\mathbb{Z}_2$-gradings on $KHI(Y,K)$, the decomposition of $I\sharp(Y)$ discussed in the previous paper, and the minus version of instanton knot homology $\underline{\rm KHI}-(Y,K)$ introduced by the first author.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube