Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 30 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

New Bias Calibration for Robust Estimation in Small Areas (2101.04390v1)

Published 12 Jan 2021 in stat.ME

Abstract: Using sample surveys as a cost effective tool to provide estimates for characteristics of interest at population and sub-populations (area/domain) level has a long tradition in "small area estimation". However, the existence of outliers in the sample data can significantly affect the estimation for areas in which they occur, especially where the domain-sample size is small. Based on existing robust estimators for small area estimation we propose two novel approaches for bias calibration. A series of simulations shows that our methods lead to more efficient estimators in comparison with other existing bias-calibration methods. As a real data example we apply our estimators to obtain \textit{Gini} coefficients in labour market areas of the Tuscany region of Italy, where our sources of information are the EU-SILC survey and the Italian census. This analysis shows that the new methods reveal a different picture than existing methods. We extend our ideas to predictions for non-sampled areas.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.