Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hecke algebras for tame supercuspidal types (2101.01873v1)

Published 6 Jan 2021 in math.RT and math.NT

Abstract: Let $F$ be a non-archimedean local field of residue characteristic $p\neq 2$. Let $G$ be a connected reductive group over $F$ that splits over a tamely ramified extension of $F$. Yu constructed types which are called tame supercuspidal types and conjectured that Hecke algebras associated with these types are isomorphic to Hecke algebras associated with depth-zero types of some twisted Levi subgroups of $G$. In this paper, we prove this conjecture. We also prove that the Hecke algebra associated with a regular supercuspidal type is isomorphic to the group algebra of a certain abelian group.

Summary

We haven't generated a summary for this paper yet.