Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The center of Hecke algebras of types (2210.15190v2)

Published 27 Oct 2022 in math.RT

Abstract: We describe the center of the Hecke algebra of a type attached to a Bernstein block under some hypothesis. When $\bf G$ is a connected reductive group over non-archimedean local field $F$ that splits over a tamely ramified extension of $F$ and the residue characteristic of $F$ does not divide the order of the absolute Weyl group of $\bf G$, the works of Kim-Yu and Fintzen associate a type to each Bernstein block and our hypothesis is satisfied for such types. We use our results to give a description of the Bernstein center of the Hecke algebra $\mathcal{H}({\bf G } (F),K)$ when $K$ belongs to a nice family of compact open subgroups of ${\bf G}(F)$ (which includes all the Moy-Prasad filtrations of an Iwahori subgroup) via the theory of types.

Summary

We haven't generated a summary for this paper yet.