Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Adjoint operations in twist-products of lattices (2101.00677v1)

Published 3 Jan 2021 in math.RA

Abstract: Given an integral commutative residuated lattice L=(L,\vee,\wedge), its full twist-product (L2,\sqcup,\sqcap) can be endowed with two binary operations \odot and \Rightarrow introduced formerly by M. Busaniche and R. Cignoli as well as by C. Tsinakis and A. M. Wille such that it becomes a commutative residuated lattice. For every a in L we define a certain subset P_a(L) of L2. We characterize when P_a(L) is a sublattice of the full twist-product (L2,\sqcup,\sqcap). In this case P_a(L) together with some natural antitone involution ' becomes a pseudo-Kleene lattice. If L is distributive then (P_a(L),\sqcup,\sqcap,') becomes a Kleene lattice. We present sufficient conditions for P_a(L) being a subalgebra of (L2,\sqcup,\sqcap,\odot,\Rightarrow) and thus for \odot and \Rightarrow being a pair of adjoint operations on P_a(L). Finally, we introduce another pair \odot and \Rightarrow of adjoint operations on the full twist-product of a bounded commutative residuated lattice such that the resulting algebra is a bounded commutative residuated lattice satisfying the double negation law and we investigate when P_a(L) is closed under these new operations \odot and \Rightarrow.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.