Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 29 tok/s
GPT-5 High 26 tok/s Pro
GPT-4o 98 tok/s
GPT OSS 120B 470 tok/s Pro
Kimi K2 216 tok/s Pro
2000 character limit reached

Vertex reinforced random walks with exponential interaction on complete graphs (2012.14598v1)

Published 29 Dec 2020 in math.PR

Abstract: We describe a model for $m$ vertex reinforced interacting random walks on complete graphs with $d\geq 2$ vertices. The transition probability of a random walk to a given vertex depends exponentially on the proportion of visits made by all walks to that vertex. The individual proportion of visits is modulated by a strength parameter that can be set equal to any real number. This model covers a large variety of interactions including different vertex repulsion and attraction strengths between any two random walks as well as self-reinforced interactions. We show that the process of empirical vertex occupation measures defined by the interacting random walks converges (a.s.) to the limit set of the flow induced by a smooth vector field. Further, if the set of equilibria of the field is formed by isolated points, then the vertex occupation measures converge (a.s.) to an equilibrium of the field. These facts are shown by means of the construction of a strict Lyapunov function. We show that if the absolute value of the interaction strength parameters are smaller than a certain upper bound, then, for any number of random walks ($m\geq 2$) on any graph ($d \geq 2$), the vertex occupation measure converges toward a unique equilibrium. We provide two additional examples of repelling random walks for the cases $m=d=2$ and $m=3$, $d=2$. The latter is used to study some properties of three exponentially repelling random walks on $\mathbb{Z}$.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.