Central Limit Theorem for $(t,s)$-sequences, I (2012.14004v1)
Abstract: Let $ (X_n){n \geq 0} $ be a digital $(t,s)$-sequence in base $2$, $\mathcal{P}_m =(X_n){n=0}{2m-1} $, and let $D(\mathcal{P}m, Y )$ be the local discrepancy of $\mathcal{P}_m$. Let $T \oplus Y$ be the digital addition of $T$ and $Y$, and let $$\mathcal{M}{s,p} (\mathcal{P}m) =\Big( \int{[0,1){2s}} |D(\mathcal{P}m \oplus T , Y ) |p \mathrm{d}T \mathrm{d}Y \Big){1/p}.$$ In this paper, we prove that $D(\mathcal{P}_m \oplus T , Y ) / \mathcal{M}{s,2} (\mathcal{P}m)$ weakly converge to the standard Gaussisian distribution for $m \rightarrow \infty$, where $T,Y$ are uniformly distributed random variables in $[0,1)s$. In addition, we prove that \begin{equation} \nonumber \mathcal{M}{s,p} (\mathcal{P}m) / \mathcal{M}{s,2} (\mathcal{P}m) \to \frac{1}{\sqrt{2\pi}}\int{-\infty}{\infty} |u|p e{-u2/2} \mathrm{d}u \quad {\rm for} \; \; m \to \infty , \;\; p>0. \end{equation}