Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A general correlation inequality for level sets of sums of independent random variables using the Bernoulli part with applications to the almost sure local limit theorem (2305.19372v1)

Published 30 May 2023 in math.PR

Abstract: Let $X={X_j , j\ge 1}$ be a sequence of independent, square integrable variables taking values in a common lattice $\mathcal L(v_{ 0},D )= {v_{ k}=v_{ 0}+D k , k\in \Z}$. Let $S_n=X_1+\ldots +X_n$, $a_n= {\mathbb E\,} S_n$, and $\s_n2={\rm Var}(S_n)\to \infty$ with $n$. Assume that for each $j$, $\t_{X_j} =\sum_{k\in \Z}{\mathbb P}{X_j=v_k}\wedge{\mathbb P}{X_j=v_{k+1}}>0$. Using the Bernoulli part, we prove a general sharp correlation inequality extending the one we obtained in the i.i.d.\,case in \cite{W3}: Let $0<\t_j\le \t_{X_j}$ and assume that $ \nu_n =\sum_{j=1}n \t_j \, \uparrow \infty$, $n\to \infty$. Let $\k_j\in \mathcal L(jv_0,D)$, $j=1,2,\ldots$ be a sequence of integers such that \begin{equation*} {\rm(1)}\qquad\frac{\kappa_j-a_j}{\s_j}=\mathcal O(1 ), \qq\quad {\rm(2)}\qquad \s_j \,{\mathbb P}{S_j=\kappa_j} ={\mathcal O}(1). \end{equation*} Then there exists a constant $C $ such that for all $1\le m<n$, \begin{align*} \s_n&\s_m \, \Big|{\mathbb P}{S_n=\k_n, S_m=\k_m}- {\mathbb P}{S_n=\k_n }{\mathbb P}{ S_m=\k_m} \Big| \cr & \,\le \, \frac{C}{D2}\, \max \Big(\frac{\s_n }{\sqrt{\nu_n}},\frac{\s_m }{\sqrt {\nu_m}} \Big)3 \,\bigg{ \nu_n{1/2} \prod_{j=m+1}n\vartheta_j + {\nu_n{1/2} \over (\nu_n-\nu_m) {3/2}}+{ 1\over \sqrt{{\nu_n\over \nu_m}}-1} \bigg}. \end{align*} We derive a sharp almost sure local limit theorem

Summary

We haven't generated a summary for this paper yet.