Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A New Perspective to Node Influence Evaluation in Complex Network Using Subgraph Tr-Centrality (2012.13617v2)

Published 25 Dec 2020 in cs.SI

Abstract: There is great significance in evaluating a node's Influence ranking in complex networks. Over the years, many researchers have presented different measures for quantifying node interconnectedness within networks. Therefore, this paper introduces a centrality measure called Tr-centrality which focuses on using the node triangle structure and the node neighborhood information to define the strength of a node, which is defined as the summation of Gruebler's Equation of the node's one-hop triangle neighborhood to the number of all the edges in the subgraph. Furthermore, we socially consider it as the local trust of a node. To verify the validity of Tr-centrality [1], we apply it to four real-world networks with different densities and shapes, and Tr-centrality has proven to yield better results.

Summary

We haven't generated a summary for this paper yet.