Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Global Rank Estimation (1710.11341v1)

Published 31 Oct 2017 in cs.SI and physics.soc-ph

Abstract: In real world complex networks, the importance of a node depends on two important parameters: 1. characteristics of the node, and 2. the context of the given application. The current literature contains several centrality measures that have been defined to measure the importance of a node based on the given application requirements. These centrality measures assign a centrality value to each node that denotes its importance index. But in real life applications, we are more interested in the relative importance of the node that can be measured using its centrality rank based on the given centrality measure. To compute the centrality rank of a node, we need to compute the centrality value of all the nodes and compare them to get the rank. This process requires the entire network. So, it is not feasible for real-life applications due to the large size and dynamic nature of real world networks. In the present project, we aim to propose fast and efficient methods to estimate the global centrality rank of a node without computing the centrality value of all nodes. These methods can be further extended to estimate the rank without having the entire network. The proposed methods use the structural behavior of centrality measures, sampling techniques, or the machine learning models. In this work, we also discuss how to apply these methods for degree and closeness centrality rank estimation.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Akrati Saxena (28 papers)
  2. S. R. S. Iyengar (19 papers)
Citations (8)

Summary

We haven't generated a summary for this paper yet.