Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 90 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 27 tok/s
GPT-5 High 22 tok/s Pro
GPT-4o 101 tok/s
GPT OSS 120B 467 tok/s Pro
Kimi K2 163 tok/s Pro
2000 character limit reached

Wideband Channel Estimation with A Generative Adversarial Network (2012.12063v1)

Published 22 Dec 2020 in eess.SP

Abstract: Communication at high carrier frequencies such as millimeter wave (mmWave) and terahertz (THz) requires channel estimation for very large bandwidths at low SNR. Hence, allocating an orthogonal pilot tone for each coherence bandwidth leads to excessive number of pilots. We leverage generative adversarial networks (GANs) to accurately estimate frequency selective channels with few pilots at low SNR. The proposed estimator first learns to produce channel samples from the true but unknown channel distribution via training the generative network, and then uses this trained network as a prior to estimate the current channel by optimizing the network's input vector in light of the current received signal. Our results show that at an SNR of -5 dB, even if a transceiver with one-bit phase shifters is employed, our design achieves the same channel estimation error as an LS estimator with SNR = 20 dB or the LMMSE estimator at 2.5 dB, both with fully digital architectures. Additionally, the GAN-based estimator reduces the required number of pilots by about 70% without significantly increasing the estimation error and required SNR. We also show that the generative network does not appear to require retraining even if the number of clusters and rays change considerably.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.