Weyl-Wigner Representation of Canonical Equilibrium States (2012.11674v2)
Abstract: The Weyl-Wigner representations for canonical thermal equilibrium quantum states are obtained for the whole class of quadratic Hamiltonians through a Wick rotation of the Weyl-Wigner symbols of Heisenberg and metaplectic operators. The behavior of classical structures inherently associated to these unitaries is described under the Wick mapping, unveiling that a thermal equilibrium state is fully determined by a complex symplectic matrix, which sets all of its thermodynamical properties. The four categories of Hamiltonian dynamics (Parabolic, Elliptic, Hyperbolic, and Loxodromic) are analyzed. Semiclassical and high temperature approximations are derived and compared to the classical and/or quadratic behavior.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.