Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 41 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

An Approach to Gender Pay Equity Analysis Using Bayesian Hierarchical Regression (2012.11411v1)

Published 21 Dec 2020 in stat.AP

Abstract: Diversity and inclusion, or D and I, is a topic that sparks the interest of companies, research groups, and individuals alike. Recently in the United States, renewed focus has been placed on fair and equitable pay practices, which are a key component of promoting diversity in the workplace. Despite the increased demand for reliable pay equity analysis, the challenges of conducting this type of analysis on industry data have not been adequately addressed. This paper explains a few limitations of current approaches to pay equity analysis by gender and improves on them with a Bayesian hierarchical regression model. Using global workforce data from a large U.S. semiconductor company, Micron Technology, Inc., the paper demonstrates how the model provides a holistic view of gender pay equity across the organization, while overcoming issues more common in industry data, such as small sample size and poor gender representation. When compared to a prior analysis of Micron's U.S. workforce, this approach decreased the amount of manual review required, enabling decision makers to finalize pay adjustments across a workforce of 31,738 people within four weeks of receiving preliminary model results.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)