Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 90 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 20 tok/s
GPT-5 High 23 tok/s Pro
GPT-4o 93 tok/s
GPT OSS 120B 441 tok/s Pro
Kimi K2 212 tok/s Pro
2000 character limit reached

Learning temporal data with variational quantum recurrent neural network (2012.11242v1)

Published 21 Dec 2020 in quant-ph

Abstract: We propose a method for learning temporal data using a parametrized quantum circuit. We use the circuit that has a similar structure as the recurrent neural network which is one of the standard approaches employed for this type of machine learning task. Some of the qubits in the circuit are utilized for memorizing past data, while others are measured and initialized at each time step for obtaining predictions and encoding a new input datum. The proposed approach utilizes the tensor product structure to get nonlinearity with respect to the inputs. Fully controllable, ensemble quantum systems such as an NMR quantum computer is a suitable choice of an experimental platform for this proposal. We demonstrate its capability with Simple numerical simulations, in which we test the proposed method for the task of predicting cosine and triangular waves and quantum spin dynamics. Finally, we analyze the dependency of its performance on the interaction strength among the qubits in numerical simulation and find that there is an appropriate range of the strength. This work provides a way to exploit complex quantum dynamics for learning temporal data.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.