Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bohr radius for certain close-to-convex harmonic mappings (2012.06829v1)

Published 12 Dec 2020 in math.CV

Abstract: Let $ \mathcal{H} $ be the class of harmonic functions $ f=h+\bar{g} $ in the unit disk $\mathbb{D}:={z\in\mathbb{C} : |z|<1}$, where $ h $ and $ g $ are analytic in $ \mathbb{D} $. Let $$\mathcal{P}{\mathcal{H}}{0}(\alpha)={f=h+\overline{g} \in \mathcal{H} : \real (h{\prime}(z)-\alpha)>|g{\prime}(z)|\; \mbox{with}\; 0\leq\alpha<1,\; g{\prime}(0)=0,\; z \in \mathbb{D}} $$ be the class of close-to-convex mappings defined by Li and Ponnusamy \cite{Injectivity section}. In this paper, we obtain the sharp Bohr-Rogosinski radius, improved Bohr radius and refined Bohr radius for the class $ \mathcal{P}{\mathcal{H}}{0}(\alpha) $.

Summary

We haven't generated a summary for this paper yet.