2000 character limit reached
Bohr radius for certain close-to-convex harmonic mappings (2012.06829v1)
Published 12 Dec 2020 in math.CV
Abstract: Let $ \mathcal{H} $ be the class of harmonic functions $ f=h+\bar{g} $ in the unit disk $\mathbb{D}:={z\in\mathbb{C} : |z|<1}$, where $ h $ and $ g $ are analytic in $ \mathbb{D} $. Let $$\mathcal{P}{\mathcal{H}}{0}(\alpha)={f=h+\overline{g} \in \mathcal{H} : \real (h{\prime}(z)-\alpha)>|g{\prime}(z)|\; \mbox{with}\; 0\leq\alpha<1,\; g{\prime}(0)=0,\; z \in \mathbb{D}} $$ be the class of close-to-convex mappings defined by Li and Ponnusamy \cite{Injectivity section}. In this paper, we obtain the sharp Bohr-Rogosinski radius, improved Bohr radius and refined Bohr radius for the class $ \mathcal{P}{\mathcal{H}}{0}(\alpha) $.