Bohr-Rogosinski and improved Bohr type inequalities for certain fully starlike harmonic mappings (2104.04509v1)
Abstract: The classical Bohr inequality states that if $ f $ is an analytic function with the power series representation $ f(z)=\sum_{n=0}{\infty}a_nzn $ in the unit disk $ \mathbb{D}:={z\in\mathbb{C} : |z|<1} $ such that $ |f(z)|\leq 1 $ for all $ z\in\mathbb{D} $, then \begin{equation*} \sum_{n=0}{\infty}|a_n|rn\leq 1\;\; \text{for}\;\; |z|=r\leq\frac{1}{3} \end{equation*} and the constant $ 1/3 $ cannot be improved. The constant $ r_0=1/3 $ is known as Bohr radius and the inequality $ \sum_{n=0}{\infty}|a_n|rn\leq 1 $ is known as Bohr inequality. Let $ \mathcal{H} $ be the class of complex-valued harmonic mappings $ f=h+\bar{g}$ defined in the unit disk $ \mathbb{D} $, where $ h $ and $ g $ are analytic functions in $ \mathbb{D} $ with the normalization $ h(0)=0=h{\prime}(0)-1 $ and $ g(0)=0 $. Let $ \mathcal{H}{0}={f=h+\bar{g}\in\mathcal{H} : g{\prime}(0)=0}. $ Let $ \mathcal{P}{0}{\mathcal{H}}(M) :={f=h+\overline{g} \in \mathcal{H}{0}: \real (zh{\prime\prime}(z))> -M+|zg{\prime\prime}(z)|,\; z \in \mathbb{D},\; M>0} $. Functions in the class $ \mathcal{P}{0}{\mathcal{H}}(M) $ are called fully starlike univalent functions for $ 0<M<1/\log 4 $. In this paper, we obtain the sharp Bohr-Rogosinski type inequality and improved Bohr inequality and the corresponding Bohr radius for the class $ \mathcal{P}_{\mathcal{H}}{0}(M) $.