Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Surface growth on treelike lattices and the upper critical dimension of the KPZ class (2012.06266v1)

Published 11 Dec 2020 in cond-mat.stat-mech

Abstract: Aiming to investigate the upper critical dimension, $d_u$, of the KPZ class, in [EPL 103 (2013) 10005] some growth models were numerically analyzed using Cayley trees (CTs) as substrates, as a way to access their behavior in the infinite-dimensional limit, and some unexpected results were reported: logarithmic roughness scaling, differing for EW and KPZ models (indicating that even at $d=\infty$ the KPZ nonlinearity is still relevant); beyond asymptotically rough EW surfaces above the upper critical dimension of the EW class. Motivated by these strange findings, I revisit these growth models here to show that such results are simple consequences of boundary effects, inherent to systems defined on CTs. In fact, I demonstrate that the anomalous boundary of the CT leads the growing surfaces to develop curved shapes, which explains the strange behaviors previously found for these systems, once the global "roughness" were analyzed for non-flat surfaces in the study above. Importantly, by measuring the height fluctuations at the central site of the CT, which can be seen as an approximation for the Bethe lattice, smooth surfaces are found for both EW and KPZ classes, consistently with the behavior expected for growing systems in dimensions $d \geqslant d_u$. Interesting features of the 1-pt height fluctuations, such as the possibility of non-saturation in the steady state regime, are also discussed for substrates in general.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)