Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 100 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 29 tok/s
GPT-5 High 29 tok/s Pro
GPT-4o 103 tok/s
GPT OSS 120B 480 tok/s Pro
Kimi K2 215 tok/s Pro
2000 character limit reached

Interpreting Neural Networks as Gradual Argumentation Frameworks (Including Proof Appendix) (2012.05738v1)

Published 10 Dec 2020 in cs.NE, cs.AI, and cs.LG

Abstract: We show that an interesting class of feed-forward neural networks can be understood as quantitative argumentation frameworks. This connection creates a bridge between research in Formal Argumentation and Machine Learning. We generalize the semantics of feed-forward neural networks to acyclic graphs and study the resulting computational and semantical properties in argumentation graphs. As it turns out, the semantics gives stronger guarantees than existing semantics that have been tailor-made for the argumentation setting. From a machine-learning perspective, the connection does not seem immediately helpful. While it gives intuitive meaning to some feed-forward-neural networks, they remain difficult to understand due to their size and density. However, the connection seems helpful for combining background knowledge in form of sparse argumentation networks with dense neural networks that have been trained for complementary purposes and for learning the parameters of quantitative argumentation frameworks in an end-to-end fashion from data.

Citations (43)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)