Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Model Compression Using Optimal Transport (2012.03907v1)

Published 7 Dec 2020 in cs.CV and cs.LG

Abstract: Model compression methods are important to allow for easier deployment of deep learning models in compute, memory and energy-constrained environments such as mobile phones. Knowledge distillation is a class of model compression algorithm where knowledge from a large teacher network is transferred to a smaller student network thereby improving the student's performance. In this paper, we show how optimal transport-based loss functions can be used for training a student network which encourages learning student network parameters that help bring the distribution of student features closer to that of the teacher features. We present image classification results on CIFAR-100, SVHN and ImageNet and show that the proposed optimal transport loss functions perform comparably to or better than other loss functions.

Citations (6)

Summary

We haven't generated a summary for this paper yet.