Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
91 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
o3 Pro
5 tokens/sec
GPT-4.1 Pro
15 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
Gemini 2.5 Flash Deprecated
12 tokens/sec
2000 character limit reached

Convergence of Gradient Algorithms for Nonconvex C^{1+alpha} Cost Functions (2012.00628v3)

Published 1 Dec 2020 in math.OC and cs.LG

Abstract: This paper is concerned with convergence of stochastic gradient algorithms with momentum terms in the nonconvex setting. A class of stochastic momentum methods, including stochastic gradient descent, heavy ball, and Nesterov's accelerated gradient, is analyzed in a general framework under mild assumptions. Based on the convergence result of expected gradients, we prove the almost sure convergence by a detailed discussion of the effects of momentum and the number of upcrossings. It is worth noting that there are not additional restrictions imposed on the objective function and stepsize. Another improvement over previous results is that the existing Lipschitz condition of the gradient is relaxed into the condition of Holder continuity. As a byproduct, we apply a localization procedure to extend our results to stochastic stepsizes.

Summary

We haven't generated a summary for this paper yet.