Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Stochastic gradient-free descents (1912.13305v5)

Published 31 Dec 2019 in math.OC, cs.LG, cs.NA, and math.NA

Abstract: In this paper we propose stochastic gradient-free methods and accelerated methods with momentum for solving stochastic optimization problems. All these methods rely on stochastic directions rather than stochastic gradients. We analyze the convergence behavior of these methods under the mean-variance framework, and also provide a theoretical analysis about the inclusion of momentum in stochastic settings which reveals that the momentum term we used adds a deviation of order $\mathcal{O}(1/k)$ but controls the variance at the order $\mathcal{O}(1/k)$ for the $k$th iteration. So it is shown that, when employing a decaying stepsize $\alpha_k=\mathcal{O}(1/k)$, the stochastic gradient-free methods can still maintain the sublinear convergence rate $\mathcal{O}(1/k)$ and the accelerated methods with momentum can achieve a convergence rate $\mathcal{O}(1/k2)$ in probability for the strongly convex objectives with Lipschitz gradients; and all these methods converge to a solution with a zero expected gradient norm when the objective function is nonconvex, twice differentiable and bounded below.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Xiaopeng Luo (10 papers)
  2. Xin Xu (188 papers)
Citations (2)

Summary

We haven't generated a summary for this paper yet.