Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Improved Performance Guarantees for Orthogonal Group Synchronization via Generalized Power Method (2012.00470v3)

Published 1 Dec 2020 in cs.IT, math.IT, and math.OC

Abstract: Given the noisy pairwise measurements among a set of unknown group elements, how to recover them efficiently and robustly? This problem, known as group synchronization, has drawn tremendous attention in the scientific community. In this work, we focus on orthogonal group synchronization that has found many applications, including computer vision, robotics, and cryo-electron microscopy. One commonly used approach is the least squares estimation that requires solving a highly nonconvex optimization program. The past few years have witnessed considerable advances in tackling this challenging problem by convex relaxation and efficient first-order methods. However, one fundamental theoretical question remains to be answered: how does the recovery performance depend on the noise strength? To answer this question, we study a benchmark model: recovering orthogonal group elements from their pairwise measurements corrupted by Gaussian noise. We investigate the performance of convex relaxation and the generalized power method (GPM). By applying the novel~\emph{leave-one-out} technique, we prove that the GPM with spectral initialization enjoys linear convergence to the global optima to the convex relaxation that also matches the maximum likelihood estimator. Our result achieves a near-optimal performance bound on the convergence of the GPM and improves the state-of-the-art theoretical guarantees on the tightness of convex relaxation by a large margin.

Citations (22)

Summary

We haven't generated a summary for this paper yet.