Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Solving Orthogonal Group Synchronization via Convex and Low-Rank Optimization: Tightness and Landscape Analysis (2006.00902v1)

Published 1 Jun 2020 in math.OC, cs.IT, and math.IT

Abstract: Group synchronization aims to recover the group elements from their noisy pairwise measurements. It has found many applications in community detection, clock synchronization, and joint alignment problem. This paper focuses on the orthogonal group synchronization which is often used in cryo-EM and computer vision. However, it is generally NP-hard to retrieve the group elements by finding the least squares estimator. In this work, we first study the semidefinite programming (SDP) relaxation of the orthogonal group synchronization and its tightness, i.e., the SDP estimator is exactly equal to the least squares estimator. Moreover, we investigate the performance of the Burer-Monteiro factorization in solving the SDP relaxation by analyzing its corresponding optimization landscape. We provide deterministic sufficient conditions which guarantee: (i) the tightness of SDP relaxation; (ii) optimization landscape arising from the Burer-Monteiro approach is benign, i.e., the global optimum is exactly the least squares estimator and no other spurious local optima exist. Our result provides a solid theoretical justification of why the Burer-Monteiro approach is remarkably efficient and effective in solving the large-scale SDPs arising from orthogonal group synchronization. We perform numerical experiments to complement our theoretical analysis, which gives insights into future research directions.

Citations (20)

Summary

We haven't generated a summary for this paper yet.