Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 29 tok/s
GPT-5 High 29 tok/s Pro
GPT-4o 102 tok/s
GPT OSS 120B 462 tok/s Pro
Kimi K2 181 tok/s Pro
2000 character limit reached

Drone classification from RF fingerprints using deep residual nets (2011.13663v1)

Published 27 Nov 2020 in eess.SP

Abstract: Detecting UAVs is becoming more crucial for various industries such as airports and nuclear power plants for improving surveillance and security measures. Exploiting radio frequency (RF) based drone control and communication enables a passive way of drone detection for a wide range of environments and even without favourable line of sight (LOS) conditions. In this paper, we evaluate RF based drone classification performance of various state-of-the-art (SoA) models on a new realistic drone RF dataset. With the help of a newly proposed residual Convolutional Neural Network (CNN) model, we show that the drone RF frequency signatures can be used for effective classification. The robustness of the classifier is evaluated in a multipath environment considering varying Doppler frequencies that may be introduced from a flying drone. We also show that the model achieves better generalization capabilities under different wireless channel and drone speed scenarios. Furthermore, the newly proposed model's classification performance is evaluated on a simultaneous multi-drone scenario. The classifier achieves close to 99 % classification accuracy for signal-to-noise ratio (SNR) 0 dB and at -10 dB SNR it obtains 5 % better classification accuracy compared to the existing framework.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.