Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 100 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 29 tok/s
GPT-5 High 29 tok/s Pro
GPT-4o 103 tok/s
GPT OSS 120B 480 tok/s Pro
Kimi K2 215 tok/s Pro
2000 character limit reached

Statistical theory for image classification using deep convolutional neural networks with cross-entropy loss under the hierarchical max-pooling model (2011.13602v2)

Published 27 Nov 2020 in math.ST and stat.TH

Abstract: Convolutional neural networks (CNNs) trained with cross-entropy loss have proven to be extremely successful in classifying images. In recent years, much work has been done to also improve the theoretical understanding of neural networks. Nevertheless, it seems limited when these networks are trained with cross-entropy loss, mainly because of the unboundedness of the target function. In this paper, we aim to fill this gap by analyzing the rate of the excess risk of a CNN classifier trained by cross-entropy loss. Under suitable assumptions on the smoothness and structure of the a posteriori probability, it is shown that these classifiers achieve a rate of convergence which is independent of the dimension of the image. These rates are in line with the practical observations about CNNs.

Citations (17)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.