Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 226 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Generalization techniques of neural networks for fluid flow estimation (2011.11911v2)

Published 24 Nov 2020 in physics.flu-dyn and physics.comp-ph

Abstract: We demonstrate several techniques to encourage practical uses of neural networks for fluid flow estimation. In the present paper, three perspectives which are remaining challenges for applications of machine learning to fluid dynamics are considered: 1. interpretability of machine-learned results, 2. bulking out of training data, and 3. generalizability of neural networks. For the interpretability, we first demonstrate two methods to observe the internal procedure of neural networks, i.e., visualization of hidden layers and application of gradient-weighted class activation mapping (Grad-CAM), applied to canonical fluid flow estimation problems -- $(1)$ drag coefficient estimation of a cylinder wake and $(2)$ velocity estimation from particle images. It is exemplified that both approaches can successfully tell us evidences of the great capability of machine learning-based estimations. We then utilize some techniques to bulk out training data for super-resolution analysis and temporal prediction for cylinder wake and NOAA sea surface temperature data to demonstrate that sufficient training of neural networks with limited amount of training data can be achieved for fluid flow problems. The generalizability of machine learning model is also discussed by accounting for the perspectives of inter/extrapolation of training data, considering super-resolution of wakes behind two parallel cylinders. We find that various flow patterns generated by complex interaction between two cylinders can be reconstructed well, even for the test configurations regarding the distance factor. The present paper can be a significant step toward practical uses of neural networks for both laminar and turbulent flow problems.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube