Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Solving Two Dimensional H(curl)-elliptic Interface Systems with Optimal Convergence On Unfitted Meshes (2011.11905v1)

Published 24 Nov 2020 in math.NA and cs.NA

Abstract: In this article, we develop and analyze a finite element method with the first family N\'ed\'elec elements of the lowest degree for solving a Maxwell interface problem modeled by a $\mathbf{H}(\text{curl})$-elliptic equation on unfitted meshes. To capture the jump conditions optimally, we construct and use $\mathbf{H}(\text{curl})$ immersed finite element (IFE) functions on interface elements while keep using the standard N\'ed\'elec functions on all the non-interface elements. We establish a few important properties for the IFE functions including the unisolvence according to the edge degrees of freedom, the exact sequence relating to the $H1$ IFE functions and the optimal approximation capabilities. In order to achieve the optimal convergence rates, we employ a Petrov-Galerkin method in which the IFE functions are only used as the trial functions and the standard N\'ed\'elec functions are used as the test functions which can eliminate the non-conformity errors. We analyze the inf-sup conditions under certain conditions and show the optimal convergence rates which are also validated by numerical experiments.

Citations (12)

Summary

We haven't generated a summary for this paper yet.