Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A family of immersed finite element spaces and applications to three dimensional $\mathbf{H}(\text{curl})$ interface problems (2205.14127v1)

Published 27 May 2022 in math.NA and cs.NA

Abstract: Maxwell interface problems are of great importance in many electromagnetic applications. Unfitted mesh methods are especially attractive in 3D computation as they can circumvent generating complex 3D interface-fitted meshes. However, many unfitted mesh methods rely on non-conforming approximation spaces, which may cause a loss of accuracy for solving Maxwell equations, and the widely-used penalty techniques in the literature may not help in recovering the optimal convergence. In this article, we provide a remedy by developing N\'ed\'elec-type immersed finite element spaces with a Petrov-Galerkin scheme that is able to produce optimal-convergent solutions. To establish a systematic framework, we analyze all the $H1$, $\mathbf{H}(\text{curl})$ and $\mathbf{H}(\text{div})$ IFE spaces and form a discrete de Rham complex. Based on these fundamental results, we further develop a fast solver using a modified Hiptmair-Xu preconditioner which works for both the GMRES and CG methods.

Citations (3)

Summary

We haven't generated a summary for this paper yet.