Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Interconnectivity Vector: A Finite-Dimensional Vector Representation of Persistent Homology (2011.11579v1)

Published 23 Nov 2020 in cs.CG and cs.LG

Abstract: Persistent Homology (PH) is a useful tool to study the underlying structure of a data set. Persistence Diagrams (PDs), which are 2D multisets of points, are a concise summary of the information found by studying the PH of a data set. However, PDs are difficult to incorporate into a typical machine learning workflow. To that end, two main methods for representing PDs have been developed: kernel methods and vectorization methods. In this paper we propose a new finite-dimensional vector, called the interconnectivity vector, representation of a PD adapted from Bag-of-Words (BoW). This new representation is constructed to demonstrate the connections between the homological features of a data set. This initial definition of the interconnectivity vector proves to be unstable, but we introduce a stabilized version of the vector and prove its stability with respect to small perturbations in the inputs. We evaluate both versions of the presented vectorization on several data sets and show their high discriminative power.

Citations (2)

Summary

We haven't generated a summary for this paper yet.