Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Persistence Codebooks for Topological Data Analysis (1802.04852v4)

Published 13 Feb 2018 in stat.ML, cs.LG, and math.AT

Abstract: Persistent homology (PH) is a rigorous mathematical theory that provides a robust descriptor of data in the form of persistence diagrams (PDs) which are 2D multisets of points. Their variable size makes them, however, difficult to combine with typical machine learning workflows. In this paper we introduce persistence codebooks, a novel expressive and discriminative fixed-size vectorized representation of PDs. To this end, we adapt bag-of-words (BoW), vectors of locally aggregated descriptors (VLAD) and Fischer vectors (FV) for the quantization of PDs. Persistence codebooks represent PDs in a convenient way for machine learning and statistical analysis and have a number of favorable practical and theoretical properties including 1-Wasserstein stability. We evaluate the presented representations on several heterogeneous datasets and show their (high) discriminative power. Our approach achieves state-of-the-art performance and beyond in much less time than alternative approaches.

Citations (26)

Summary

We haven't generated a summary for this paper yet.