Papers
Topics
Authors
Recent
2000 character limit reached

Persistence Codebooks for Topological Data Analysis

Published 13 Feb 2018 in stat.ML, cs.LG, and math.AT | (1802.04852v4)

Abstract: Persistent homology (PH) is a rigorous mathematical theory that provides a robust descriptor of data in the form of persistence diagrams (PDs) which are 2D multisets of points. Their variable size makes them, however, difficult to combine with typical machine learning workflows. In this paper we introduce persistence codebooks, a novel expressive and discriminative fixed-size vectorized representation of PDs. To this end, we adapt bag-of-words (BoW), vectors of locally aggregated descriptors (VLAD) and Fischer vectors (FV) for the quantization of PDs. Persistence codebooks represent PDs in a convenient way for machine learning and statistical analysis and have a number of favorable practical and theoretical properties including 1-Wasserstein stability. We evaluate the presented representations on several heterogeneous datasets and show their (high) discriminative power. Our approach achieves state-of-the-art performance and beyond in much less time than alternative approaches.

Citations (26)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.