A Quantized Analogue of the Markov-Krein Correspondence (2011.10724v3)
Abstract: We study a family of measures originating from the signatures of the irreducible components of representations of the unitary group, as the size of the group goes to infinity. Given a random signature $\lambda$ of length $N$ with counting measure $\mathbf{m}$, we obtain a random signature $\mu$ of length $N-1$ through projection onto a unitary group of lower dimension. The signature $\mu$ interlaces with the signature $\lambda$, and we record the data of $\mu,\lambda$ in a random rectangular Young diagram $w$. We show that under a certain set of conditions on $\lambda$, both $\mathbf{m}$ and $w$ converge as $N\to\infty$. We provide an explicit moment generating function relationship between the limiting objects. We further show that the moment generating function relationship induces a bijection between bounded measures and certain continual Young diagrams, which can be viewed as a quantized analogue of the Markov-Krein correspondence.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.