Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 86 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 129 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Functional central limit theorems for stick-breaking priors (2011.10138v1)

Published 19 Nov 2020 in math.ST and stat.TH

Abstract: We obtain the empirical strong law of large numbers, empirical Glivenko-Cantelli theorem, central limit theorem, functional central limit theorem for various nonparametric Bayesian priors which include the Dirichlet process with general stick-breaking weights, the Poisson-Dirichlet process, the normalized inverse Gaussian process, the normalized generalized gamma process, and the generalized Dirichlet process. For the Dirichlet process with general stick-breaking weights, we introduce two general conditions such that the central limit theorem and functional central limit theorem hold. Except in the case of the generalized Dirichlet process, since the finite dimensional distributions of these processes are either hard to obtain or are complicated to use even they are available, we use the method of moments to obtain the convergence results. For the generalized Dirichlet process we use its finite dimensional marginal distributions to obtain the asymptotics although the computations are highly technical.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.