Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 102 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 30 tok/s
GPT-5 High 27 tok/s Pro
GPT-4o 110 tok/s
GPT OSS 120B 475 tok/s Pro
Kimi K2 203 tok/s Pro
2000 character limit reached

Towards Spatio-Temporal Video Scene Text Detection via Temporal Clustering (2011.09781v1)

Published 19 Nov 2020 in cs.CV

Abstract: With only bounding-box annotations in the spatial domain, existing video scene text detection (VSTD) benchmarks lack temporal relation of text instances among video frames, which hinders the development of video text-related applications. In this paper, we systematically introduce a new large-scale benchmark, named as STVText4, a well-designed spatial-temporal detection metric (STDM), and a novel clustering-based baseline method, referred to as Temporal Clustering (TC). STVText4 opens a challenging yet promising direction of VSTD, termed as ST-VSTD, which targets at simultaneously detecting video scene texts in both spatial and temporal domains. STVText4 contains more than 1.4 million text instances from 161,347 video frames of 106 videos, where each instance is annotated with not only spatial bounding box and temporal range but also four intrinsic attributes, including legibility, density, scale, and lifecycle, to facilitate the community. With continuous propagation of identical texts in the video sequence, TC can accurately output the spatial quadrilateral and temporal range of the texts, which sets a strong baseline for ST-VSTD. Experiments demonstrate the efficacy of our method and the great academic and practical value of the STVText4. The dataset and code will be available soon.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.