Papers
Topics
Authors
Recent
Search
2000 character limit reached

A convergent structure-preserving finite-volume scheme for the Shigesada-Kawasaki-Teramoto population system

Published 17 Nov 2020 in math.NA and cs.NA | (2011.08731v1)

Abstract: An implicit Euler finite-volume scheme for an $n$-species population cross-diffusion system of Shigesada--Kawasaki--Teramoto-type in a bounded domain with no-flux boundary conditions is proposed and analyzed. The scheme preserves the formal gradient-flow or entropy structure and preserves the nonnegativity of the population densities. The key idea is to consider a suitable mean of the mobilities in such a way that a discrete chain rule is fulfilled and a discrete analog of the entropy inequality holds. The existence of finite-volume solutions, the convergence of the scheme, and the large-time asymptotics to the constant steady state are proven. Furthermore, numerical experiments in one and two space dimensiona for two and three species are presented. The results are valid for a more general class of cross-diffusion systems satisfying some structural conditions.

Citations (10)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.