Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A discrete boundedness-by-entropy method for finite-volume approximations of cross-diffusion systems (2105.05476v1)

Published 12 May 2021 in math.NA and cs.NA

Abstract: An implicit Euler finite-volume scheme for general cross-diffusion systems with volume-filling constraints is proposed and analyzed. The diffusion matrix may be nonsymmetric and not positive semidefinite, but the diffusion system is assumed to possess a formal gradient-flow structure that yields $L\infty$ bounds on the continuous level. Examples include the Maxwell-Stefan systems for gas mixtures, tumor-growth models, and systems for the fabrication of thin-film solar cells. The proposed numerical scheme preserves the structure of the continuous equations, namely the entropy dissipation inequality as well as the nonnegativity of the concentrations and the volume-filling constraints. The discrete entropy structure is a consequence of a new vector-valued discrete chain rule. The existence of discrete solutions, their positivity, and the convergence of the scheme is proved. The numerical scheme is implemented for a one-dimensional Maxwell-Stefan model and a two-dimensional thin-film solar cell system. It is illustrated that the convergence rate in space is of order two and the discrete relative entropy decays exponentially.

Citations (5)

Summary

We haven't generated a summary for this paper yet.