Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Uniform Estimates in Periodic Homogenization of Fully Nonlinear Elliptic Equations (2011.08590v2)

Published 17 Nov 2020 in math.AP

Abstract: This article is concerned with uniform $C{1,\alpha}$ and $C{1,1}$ estimates in periodic homogenization of fully nonlinear elliptic equations. The analysis is based on the compactness method, which involves linearization of the operator at each approximation step. Due to the nonlinearity of the equations, the linearized operators involve the Hessian of correctors, which appear in the previous step. The involvement of the Hessian of the correctors deteriorates the regularity of the linearized operator, and sometimes even changes its oscillating pattern. These issues are resolved with new approximation techniques, which yield a precise decomposition of the regular part and the irregular part of the homogenization process, along with a uniform control of the Hessian of the correctors in an intermediate level. The approximation techniques are even new in the context of linear equations. Our argument can be applied not only to concave operators, but also to certain class of non-concave operators.

Summary

We haven't generated a summary for this paper yet.