Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An operator-asymptotic approach to periodic homogenization for equations of linearized elasticity (2308.00594v4)

Published 1 Aug 2023 in math.AP

Abstract: We present an operator-asymptotic approach to the problem of homogenization of periodic composite media in the setting of three-dimensional linearized elasticity. This is based on a uniform approximation with respect to the inverse wavelength $|\chi|$ for the solution to the resolvent problem when written as a superposition of elementary plane waves with wave vector (``quasimomentum") $\chi$. We develop an asymptotic procedure in powers of $|\chi|$, combined with a new uniform version of the classical Korn inequality. As a consequence, we obtain $L2\to L2$, $L2\to H1$, and higher-order $L2\to L2$ norm-resolvent estimates in $\mathbb{R}3$. The $L2 \to H1$ and higher-order $L2 \to L2$ correctors emerge naturally from the asymptotic procedure, and the former is shown to coincide with the classical formulae.

Summary

We haven't generated a summary for this paper yet.