Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 97 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 29 tok/s
GPT-5 High 28 tok/s Pro
GPT-4o 93 tok/s
GPT OSS 120B 462 tok/s Pro
Kimi K2 215 tok/s Pro
2000 character limit reached

Bayesian Regression and Classification Using Gaussian Process Priors Indexed by Probability Density Functions (2011.03282v1)

Published 6 Nov 2020 in stat.ME

Abstract: In this paper, we introduce the notion of Gaussian processes indexed by probability density functions for extending the Mat\'ern family of covariance functions. We use some tools from information geometry to improve the efficiency and the computational aspects of the Bayesian learning model. We particularly show how a Bayesian inference with a Gaussian process prior (covariance parameters estimation and prediction) can be put into action on the space of probability density functions. Our framework has the capacity of classifiying and infering on data observations that lie on nonlinear subspaces. Extensive experiments on multiple synthetic, semi-synthetic and real data demonstrate the effectiveness and the efficiency of the proposed methods in comparison with current state-of-the-art methods.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run paper prompts using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.