Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Mortality modeling and regression with matrix distributions (2011.03219v5)

Published 6 Nov 2020 in stat.ME, math.ST, and stat.TH

Abstract: In this paper we investigate the flexibility of matrix distributions for the modeling of mortality. Starting from a simple Gompertz law, we show how the introduction of matrix-valued parameters via inhomogeneous phase-type distributions can lead to reasonably accurate and relatively parsimonious models for mortality curves across the entire lifespan. A particular feature of the proposed model framework is that it allows for a more direct interpretation of the implied underlying aging process than some previous approaches. Subsequently, towards applications of the approach for multi-population mortality modeling, we introduce regression via the concept of proportional intensities, which are more flexible than proportional hazard models, and we show that the two classes are asymptotically equivalent. We illustrate how the model parameters can be estimated from data by providing an adapted EM algorithm for which the likelihood increases at each iteration. The practical feasibility and competitiveness of the proposed approach, including the right-censored case, are illustrated by several sets of mortality and survival data.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.