Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Robust hypothesis testing and distribution estimation in Hellinger distance (2011.01848v1)

Published 3 Nov 2020 in math.ST, cs.IT, cs.LG, math.IT, stat.ML, and stat.TH

Abstract: We propose a simple robust hypothesis test that has the same sample complexity as that of the optimal Neyman-Pearson test up to constants, but robust to distribution perturbations under Hellinger distance. We discuss the applicability of such a robust test for estimating distributions in Hellinger distance. We empirically demonstrate the power of the test on canonical distributions.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.