Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 28 tok/s
GPT-5 High 35 tok/s Pro
GPT-4o 94 tok/s
GPT OSS 120B 476 tok/s Pro
Kimi K2 190 tok/s Pro
2000 character limit reached

Tropical Fock-Goncharov coordinates for $\mathrm{SL}_3$-webs on surfaces I: construction (2011.01768v3)

Published 3 Nov 2020 in math.GT and math.QA

Abstract: For a finite-type surface $\mathfrak{S}$, we study a preferred basis for the commutative algebra $\mathbb{C}[\mathscr{R}_{\mathrm{SL}_3(\mathbb{C})}(\mathfrak{S})]$ of regular functions on the $\mathrm{SL}_3(\mathbb{C})$-character variety, introduced by Sikora-Westbury. These basis elements come from the trace functions associated to certain tri-valent graphs embedded in the surface $\mathfrak{S}$. We show that this basis can be naturally indexed by non-negative integer coordinates, defined by Knutson-Tao rhombus inequalities and modulo 3 congruence conditions. These coordinates are related, by the geometric theory of Fock and Goncharov, to the tropical points at infinity of the dual version of the character variety.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.