Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 38 tok/s Pro
GPT-5 Medium 19 tok/s
GPT-5 High 23 tok/s Pro
GPT-4o 87 tok/s
GPT OSS 120B 464 tok/s Pro
Kimi K2 171 tok/s Pro
2000 character limit reached

Localised patterns in a generalised Swift--Hohenberg equation with a quartic marginal stability curve (2011.01669v1)

Published 3 Nov 2020 in nlin.PS and math.DS

Abstract: In some pattern-forming systems, for some parameter values, patterns form with two wavelengths, while for other parameter values, there is only one wavelength. The transition between these can be organised by a codimension-three point at which the marginal stability curve has a quartic minimum. We develop a model equation to explore this situation, based on the Swift--Hohenberg equation; the model contains, amongst other things, snaking branches of patterns of one wavelength localised in a background of patterns of another wavelength. In the small-amplitude limit, the amplitude equation for the model is a generalised Ginzburg--Landau equation with fourth-order spatial derivatives, which can take the form of a complex Swift--Hohenberg equation with real coefficients. Localised solutions in this amplitude equation help interpret the localised patterns in the model. This work extends recent efforts to investigate snaking behaviour in pattern-forming systems where two different stable non-trivial patterns exist at the same parameter values.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.