Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 16 tok/s
GPT-5 High 18 tok/s Pro
GPT-4o 104 tok/s
GPT OSS 120B 459 tok/s Pro
Kimi K2 216 tok/s Pro
2000 character limit reached

Parameter Estimation for RANS Models Using Approximate Bayesian Computation (2011.01231v1)

Published 2 Nov 2020 in physics.flu-dyn

Abstract: We use approximate Bayesian computation (ABC) to estimate unknown parameter values, as well as their uncertainties, in Reynolds-averaged Navier-Stokes (RANS) simulations of turbulent flows. The ABC method approximates posterior distributions of model parameters, but does not require the direct computation, or estimation, of a likelihood function. Compared to full Bayesian analyses, ABC thus provides a faster and more flexible parameter estimation for complex models and a wide range of reference data. In this paper, we describe the ABC approach, including the use of a calibration step, adaptive proposal, and Markov chain Monte Carlo (MCMC) technique to accelerate the parameter estimation, resulting in an improved ABC approach, denoted ABC-IMCMC. As a test of the classic ABC rejection algorithm, we estimate parameters in a nonequilibrium RANS model using reference data from direct numerical simulations of periodically sheared homogeneous turbulence. We then demonstrate the use of ABC-IMCMC to estimate parameters in the Menter shear-stress-transport (SST) model using experimental reference data for an axisymmetric transonic bump. We show that the accuracy of the SST model for this test case can be improved using ABC-IMCMC, indicating that ABC-IMCMC is a promising method for the calibration of RANS models using a wide range of reference data.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.