Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 30 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

GPU-accelerated solutions of the nonlinear Schrödinger equation for simulating 2D spinor BECs (2010.15069v2)

Published 28 Oct 2020 in cond-mat.quant-gas and physics.comp-ph

Abstract: As a first approximation beyond linearity, the nonlinear Schr\"odinger equation (NLSE) reliably describes a broad class of physical systems. Though numerical solutions of this model are well-established, these methods can be computationally complex. In this paper, we showcase a code development approach, demonstrating how computational time can be significantly reduced with readily available graphics processing unit (GPU) hardware and a straightforward code migration using open-source libraries. This process shows how CPU computations with power-law scaling in computation time with grid size can be made linear using GPUs. As a specific case study, we investigate the Gross-Pitaevskii equation, a specific version of the nonlinear Schr\"odinger model, as it describes in two dimensions a trapped, interacting, two-component Bose-Einstein condensate (BEC) subject to a spatially dependent interspin coupling, resulting in an analog to a spin-Hall system. This computational approach lets us probe high-resolution spatial features - revealing an interaction-dependent phase transition - all in a reasonable amount of time. Our computational approach is particularly relevant for research groups looking to easily accelerate straightforward numerical simulation of physical phenomena.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube